Graphs and the Probabilistic Method

Bailee Zacovic

Probabilistic Combinatorics Seminar
Prof. Dr. Lisa Sauermann
Universitat Bonn

Oct 20, 2023

Contents

1 Introduction

2 Graph Notations & Preliminaries

3 Asymptotics

4 Applications of the Probabilistic Method: A story

5 Probabilistic Bounds



1 Introduction
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There is a beautiful interface between combinatorics and philosophy witnessed by
problems of existence. Mathematicians could say everything and anything about
the features of a mathematical object, such as sheafs of modules or the Riesz rep-
resentation of a linear functional, but such properties are meaningless without the
existence of the object itself, upon which whole theories are built. From a meta-
physical perspective, existence theorems—-which beget being from non-being-are
among the most impressive mathematical accomplishments.

How do we resolve existence problems? One naive approach might be explicit
construction. Unfortunately, constructive methods can prove exceptionally diffi-
cult and/or expensive. Can we bypass direct methods? This is precisely the project
of probabilistic combinatorics: o prove mathematical objects boasting special prop-
erties exist by situating oneself in an appropriate probability space of similar objects,
and showing the desired properties hold with nonzero probability.

2 Graph Notations & Preliminaries

Definition 2.0.1. A graphis a pair G = (V,E), where V := V(G) = {v}, v,...} prescribes
the vertex set and E := E(G) = {{v;, v} : there is an edge joining v; and v;} prescribes
the edge set.

We offer a few important families of graphs in Figure 1.
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Figure 1: The complete graph K, cycle graph C,,, and path graph P, when n=6.




Another common family of graphs is the random graph, which we cannot illus-
trate here. It is the graph G = G(n, p) on n vertices where the probability of any edge
{v,w} appearing in the graph is p.

Definition 2.0.2. We call two vertices v and w adjacent if {v, w} € E.

Definition 2.0.3. The degree of v € V(G), denoted by deg(v), is given by the number
of adjacent vertices.

We'll denote a coloring of a graph G by n colorsviaa functionc: V(G) — {1,2,...,n}.
We proceed to a few measurements of sparsity in a graph.

Definition 2.0.4. A stable set S < V is a set of pair-wise non-adjacent vertices.

Definition 2.0.5. The stability number of a graph G denoted by a(G) is the cardi-
nality of the largest stable set S< V. That is,

a(G):= max |S|.
ScV stable

Recall Figure 1. One can check that that,

n n
a(Ky) =1, a(Cp) = bj , and a(P,) = H .
Definition 2.0.6. The chromatic number of a graph G denoted by y(G) is the mini-
mum number of colors needed to color the vertices of G such that c(v) # c(w) when-
ever {v,w}eE.

Returning to our guiding examples of K, C,,, and P,, one can similarly check
that,

2 when nis even 1 whenn=1

3 whennisodd ’ 2 whenn=2"

Definition 2.0.7. The girth of a graph G is the length of the shortest cycle in G.

Whenever G contains no cycles, it is convention to say girth(G) = co.
We can again check the following:

girth(K,) =3, girth(C,) = n, and girth(P,) = cc.

One might naturally expect a high stability number to correspond to a low chro-
matic number and also a high girth. In Section 4, we will explore one particularly
elegant application of the probabilistic method due to Erdés which will shock this
intuition. Before doing so, we will introduce a bit of language and technology nec-
essary for the proof.




3 Asymptotics

We define the following asympototic notation, which is commonly used in com-
puter science to discuss the efficiency and running time of algorithms.
Let (a,)nen and (by,) nen be sequences.

Definition 3.0.1. (“Big O”) We say a,, is “big O” of b,,, denoted a,, = O(b,), whenever
there exists some constant C and ny € N such that |a,| < Cb,, for all n > ny. That is,
the ratio of their respective growth is bounded.

Definition 3.0.2. (“Little O”) We say a, is “little 0” of b,,, denoted a, = o(b,), if for all
e > 0, there exists n, such that |a,| < eb, for all n > n.. That s, relative to b, a, decays
to zero.

Two less common notations include “Omega” and “Theta”.

Definition 3.0.3. (“Omega”) We say a,, is “omega” of b,, denoted a,, = Q(b,), when-
ever there exists a constant ¢ > 0 and n, such that a = c¢b,, for all n > n,. That is, the
growth of a, is bounded below by a positive constant factor of b,.

Definition 3.0.4. (“Theta”) We say a,, is “theta” of b,,, denoted a,, = ©(b,), whenever
there exist constants C and c,and some ng such that ¢b,, < a,, < Cb,, for all n > ny.
That is, the growth of a, is trapped within constant factors from above and below
of b,,.

4 Applications of the Probabilistic Method: A story

Recall the notions of chromatic number y(G) and girth(G). It is not so hard to gen-
erate examples of graphs with high chromatic number and low girth: for example,
K. Itis also not so hard to think of examples of graphs with low chromatic number
and high girth: for example, C, or the empty graph.

Question 4.0.1. (A thought experiment) Should there exist graphs with arbitrarily
large chromatic number and girth? That is, if I feed a machine any pair of positive
integers (a, b), will there always exist an output G satisfying y (G) = a and girth(G) = b?

This question is highly non-trivial, since chromatic number and girth seem al-
most antithetical measures. In fact, the conviction of the mathematical community
pre-1959 was that this certainly was not true. Until Paul Erdés proved otherwise.

Theorem 4.0.2. (Erdds, 1959) For all k, ¢ there exists a graph G satisfying girth(G) > ¢
and y(G) > k.




Proof. Fix 0 < %, andlet G=G(n,p), p = n?1. Let X denote the number of cycles of
size at most ¢. Then X := Z§:1 X, where X; denotes the number of cycles of size j.
Now, letting (n) ; := (?) j!, we compute

(n):p!
ELX;) = =L,
2j
which encodes summing over all possible ordered tuples of j vertices (v;,,...,vi))

and multiplying by the probability thateach {v; , v; ,,} appears in the edge set, where
we then divide by 2 to disregard the starting point and orientation of the cycle.
Next, we observe that,
n)ip’ ipi Jnbi-i .
E[X;] = Wip_ _nlpl_nln- =nf%7/2j.
2] 2] 2]

This then implies that

E[X] = . —— =o(n).
RN

IA

By the Markov inequality 5.0.6,
2E[X]

P[ng] < - o(1).

Setting X = [% ln(n)1 , we deduce

P [a(G) > X] < (;)(1 _ p)()z() < (ne—p(X—l)lz)X = o(1),

recalling () < 2%, (1-p) < e”?, and the union bound. Taking n sufficientlylarge such
that P[X = 2], P[a(G) = X] < } ensures the existence of some graph G with fewer
than £ cycles of size at most ¢ and a(G) < 2n'~?In(n). What remains is to take this
object which we know exists and modify it as needed to obtain the desired object.

To this end, we break each cycle of size at most ¢ by removing a vertex from each.
Call this new graph G*. Automatically, girth(G*) > ¢. Also, |V(G*)| = 7, and a(G™) <
a(G). Hence,
IG*| _n 1 nf

> —- = — 00

a(G*) 2 3n'f%n(n) 6In(n)
as n — oo. This completes the proof.

¥ (G*) =

[
Question 4.0.3. What do these constructed graph G* actually look like?

Since 1959, many explicit constructions have been discovered. We include the
following example for a bit of culture and concreteness.

Example 4.0.4. (The Mycielskian) Consider ¢ = k = 3. We can construct an explicit
graph satisfying the conclusion of Theorem 4.0.2 by forming the Mycielskian of Cs
as see in Figure 2.




—>

Figure 2: The Mycielskian graph associated to Cs. Its girth and chromatic number exceed ¢ = k = 3.

5 Probabilistic Bounds

We briefly review a bit of classical probability theory.

Definition 5.0.1. A random variable, traditionally denoted X, is a variable whose
(numerical) value depends on a random experiment.

Random variables come in two flavors: discrete and continuous.

Example 5.0.2. (Binomial Random Variable) The binomial random variable, de-
noted Bi(n, p) counts the number of successes of an experiment (whose probability
of success is p and whose probability of failure is 1 — p) performed n times.

Example 5.0.3. (Bernoulli Random Variable) The Bernoulli random variable, de-
noted Be(p) = Bi(l, p) is a special case of the binomial random variable, namely
when only a single trial occurs.

Definition 5.0.4. For E some event, the indicator function of E (also known as a
1 if E occurs

zero-one event) is given by 1(E] = )
0 otherwise.

As usual, we denote E[X] the expected value and var[X] the variance of arandom
variable X. We proceed to a few fundemental bounds in probability theory.

Theorem 5.0.5. (Chebyshev’s Inequality, 1867) If var(X) exists, then

var(X)

PIX-EX]| 21—

where t > 0.

Chebyshev’s inequality effectively bounds the concentratedness of a random
variable around its mean from below.




Theorem 5.0.6. (Markov'’s Inequality, 1935) If X = 0 almost surely, then

E[X]
PIX=t]< 5

where t > 0.

Markov’s inequality similarly bounds a non-negative random variable’s positive
deviation from its mean from above.

Definition 5.0.7. The conditional expectation of a random variable X given some
even E is the value denoted E[X|E].

Definition 5.0.8. The conditional expectation of a random variable X given some
random variables Y3, ..., Y} is a function denoted E[X|Y3,..., Yi].

Crucially, while E[X|E] is arevised valuein light of the occurrence of E, E[X|Y7, ..., Yi]
is arevised function in light of information accessible in Y,..., Y.

Often, we cannot compute expected values directly. What we can do, in the set-
ting of a discrete probability space, is partition the space into distinct events—the
probabilities of which are known-to elucidate an expected value.

Definition 5.0.9. For a probability space Q = E, UE, U..., the law of total probability
yields the following decomposition of E[X] :

E[X] =ZE[X|Ei] -P[E;].

In the special case X = 1[E], we have E[X] =P[E] = ¥ ; P[E|E;] - P[E;].

Question 5.0.10. When is arandom variable X close to its mean E[X]? Formally, for
all t=0, howdowebound P [X =E[X] + £]?

By Markov’s inequality 5.0.6, we deduce for all u >0,

P[X = E[X]+ ] =P [e"X = e"EXITD] < o u®XIH0 3 X7,

When X = ¥ | X; for {Xj}1<;<, a collection of independent random variables, we
further obtain

n
PLX = E[X] + 1] < e “EX1+0 [TE [e“%].
i=1

Supposing X = Bi(n, p), we deduce for A = np = E[X],

PIX=A+1]<e “MD.(1-p+pe"?, (1)




where one can check by expanding that 1 - p + pe* = E["B¢"P)]. How can we under-
stand the right-hand side of 1? Is it “large”? How does it grow in #?

Fixing ¢t < n— A (which is a sensible restriction, since X < n,i.e. X <E[X] - (n-
1)), we might wonder where the minimum is achieved with respect to e*. We could
check via differentiation:

d 1-p+pe")"

=0 = e“
det  euA+1) pn—A-1)

hence a minima as can be checked. It follows that, for0<t<n-2,

1 —
= M is critical,

n—A—t A+t _ n
PIX=A+t1] < P ) -(n(l p))
A+0(1-p) n—-A—t
T—p AT M R
N e N N -t
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n—-A n-A—t A A+t
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To recap, we obtain

n-»7A n—-A-t A A+t
P[X2/1+t]s(n_/l_t) '(}L+t) . (2)

This is what is called a Chernoff bound, and was established in 1952. A Chernoff
bound is an exponentially decaying upper bound on the tail of a random variable.
Itis sharper than Markov and Chebyshev, which are mere power law bounds on de-
cay. The above formulation is not unique; Chernoff bounds come in different ver-
sions. Importantly, it furnishes a tight concentration bound of a binomial random
variable around its mean.

In practice, however, the bound given in 2 is unwieldy; the behavior of the bound
is not manifestly clear. We present the following cleaner formulation, which makes

exponential decay at  — co manifest.

Theorem 5.0.11. For X = Bi(n, p), A = np, and

Q+z2)In(l+2)—-z z=-1,
p(z) =

0 z<-1"
then
P[X =E[X]+ 1] < e MWD < Tt 0, 3)
PIX<EX]-f]<e ™V <51 >0, (4)




Proof. Wehave,by2for0<t<n-A,

A+t

n-2A )"—H( A

n-A-—t A+t
(%]n—i—t.(%)lﬂ)
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P[Xz)t+t]s(
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=e
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t
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< e MW < o 3mrTs |

One can similarly derive Equation 4.

t2 [3
Corollary 5.0.12. P[X =E[X]+t]<e 2612,

The following corollary is a multiplicative version of a Chernoff bound, as it
bounds relative error rather than absolute error, and is often more practical.

Corollary 5.0.13. For X = Bi(n, p), e >0,

P[|X —E[X]| = eE[X]] < 2e?©EX] 5)

where again ¢(e) = (1+¢)In(1 +¢€) —¢, and

€2
Pl X —E[X]| = eE[X]] <26* 37X whene< (6)

N w

One natural question arises:
Question 5.0.14. Which bounds are best?

The answer to this question of course depends upon the given parameters. At
least when p < 1, the bounds in 3 and 4 are best.
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