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1 Introduction

“There is a difference between a thing and talking about a thing.”

Kurt Gödel

“That we understand Being is not just actual; it is also necessary. Without such an opening up of Being, we could not be

‘human’ in the first place.”

Martin Heidegger

There is a beautiful interface between combinatorics and philosophywitnessed by
problems of existence. Mathematicians could say everything and anything about
the features of a mathematical object, such as sheafs of modules or the Riesz rep-
resentation of a linear functional, but such properties aremeaningless without the
existence of the object itself, upon which whole theories are built. From a meta-
physical perspective, existence theorems–which beget being from non-being–are
among themost impressive mathematical accomplishments.

How do we resolve existence problems? One naive approach might be explicit
construction. Unfortunately, constructive methods can prove exceptionally diffi-
cult and/or expensive. Can we bypass direct methods? This is precisely the project
ofprobabilistic combinatorics: toprovemathematical objectsboasting specialprop-
erties exist by situating oneself in an appropriate probability space of similar objects,
and showing the desired properties hold with nonzero probability.

2 Graph Notations & Preliminaries
Definition 2.0.1. A graph is a pairG = (V ,E), whereV :=V (G) = {v1, v2, . . . } prescribes
the vertex set and E := E(G) = {{vi , v j } : there is an edge joining vi and v j } prescribes
the edge set.

We offer a few important families of graphs in Figure 1.

K6 C6 P6

Figure 1: The complete graph Kn , cycle graphCn , and path graph Pn when n = 6.
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Another common family of graphs is the random graph, which we cannot illus-
trate here. It is the graphG =G(n, p) on n vertices where the probability of any edge
{v, w} appearing in the graph is p.

Definition 2.0.2. We call two vertices v and w adjacent if {v, w} ∈ E .

Definition 2.0.3. The degree of v ∈V (G), denoted by deg(v), is given by the number
of adjacent vertices.

We’ll denoteacoloringofagraphG byn colorsviaa function c : V (G) → {1,2, . . . ,n}.
We proceed to a fewmeasurements of sparsity in a graph.

Definition 2.0.4. A stable set S ⊆V is a set of pair-wise non-adjacent vertices.

Definition 2.0.5. The stability number of a graph G denoted by α(G) is the cardi-
nality of the largest stable set S ⊆V. That is,

α(G) := max
S⊆V stable

|S|.

Recall Figure 1. One can check that that,

α(Kn) = 1, α(Cn) =
⌊n

2

⌋
, and α(Pn) =

⌈n

2

⌉
.

Definition 2.0.6. The chromatic number of a graphG denoted by χ(G) is the mini-
mumnumber of colors needed to color the vertices ofG such that c(v) ̸= c(w)when-
ever {v, w} ∈ E .

Returning to our guiding examples of Kn ,Cn , and Pn , one can similarly check
that,

χ(Kn) = n, χ(Cn) =
{

2 when n is even
3 when n is odd

, and χ(Pn) =
{

1 when n = 1

2 when n ≥ 2
.

Definition 2.0.7. The girth of a graphG is the length of the shortest cycle inG .

WheneverG contains no cycles, it is convention to say girth(G) =∞.
We can again check the following:

girth(Kn) = 3, girth(Cn) = n, and girth(Pn) =∞.

Onemight naturally expect ahigh stability number to correspond to a low chro-
matic number and also a high girth. In Section 4, we will explore one particularly
elegant application of the probabilistic method due to Erdős which will shock this
intuition. Before doing so, we will introduce a bit of language and technology nec-
essary for the proof.
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3 Asymptotics
We define the following asympototic notation, which is commonly used in com-
puter science to discuss the efficiency and running time of algorithms.

Let (an)n∈N and (bn)n∈N be sequences.

Definition 3.0.1. (“BigO”)We say an is “bigO” of bn, denoted an =O(bn), whenever
there exists some constant C and n0 ∈ N such that |an | ≤ C bn for all n > n0. That is,
the ratio of their respective growth is bounded.

Definition 3.0.2. (“Little O”)We say an is “little o” of bn , denoted an = o(bn), if for all
ϵ> 0, there exists nϵ such that |an | < ϵbn for all n > nϵ.That is, relative to bn , an decays
to zero.

Two less common notations include “Omega” and “Theta”.

Definition 3.0.3. (“Omega”)We say an is “omega” of bn , denoted an =Ω(bn),when-
ever there exists a constant c > 0 and n0 such that a ≥ cbn for all n > n0. That is, the
growth of an is bounded below by a positive constant factor of bn .

Definition 3.0.4. (“Theta”)We say an is “theta” of bn , denoted an =Θ(bn),whenever
there exist constants C and c,and some n0 such that cbn ≤ an ≤ C bn for all n > n0.
That is, the growth of an is trapped within constant factors from above and below
of bn .

4 Applications of the Probabilistic Method: A story
Recall the notions of chromatic number χ(G) and girth(G). It is not so hard to gen-
erate examples of graphs with high chromatic number and low girth: for example,
Kn . It is also not so hard to think of examples of graphs with low chromatic number
and high girth: for example,Cn or the empty graph.

Question 4.0.1. (A thought experiment) Should there exist graphs with arbitrarily
large chromatic number and girth? That is, if I feed a machine any pair of positive
integers (a,b),will therealwaysexist anoutputG satisfyingχ(G) = a andgirth(G) = b?

This question is highly non-trivial, since chromatic number and girth seem al-
most antitheticalmeasures. In fact, the convictionof themathematical community
pre-1959 was that this certainly was not true. Until Paul Erdős proved otherwise.

Theorem4.0.2. (Erdős, 1959) For all k,ℓ there exists a graphG satisfying girth(G) > ℓ
and χ(G) > k.
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Proof. Fix θ < 1
ℓ , and let G = G(n, p), p = nθ−1. Let X denote the number of cycles of

size at most ℓ. Then X := ∑ℓ
j=1 X j , where X j denotes the number of cycles of size j .

Now, letting (n) j := (n
j

)
j !, we compute

E[X j ] = (n) j p j

2 j
,

which encodes summing over all possible ordered tuples of j vertices (vi1 , . . . , vi j )
andmultiplyingby theprobability thateach {vik , vik+1 }appears in theedgeset,where
we then divide by 2 j to disregard the starting point and orientation of the cycle.
Next, we observe that,

E[X j ] = (n) j p j

2 j
≤ n j p j

2 j
= n j nθ j− j

2 j
= nθ j /2 j .

This then implies that

E[X ] =
ℓ∑

j=1

(n) j p j

2 j
≤

ℓ∑
j=1

nθ j

2 j
= o(n).

By theMarkov inequality 5.0.6,

P
[

X ≥ n

2

]
≤ 2E[X ]

n
= o(1).

Setting X =
⌈

3
p ln(n)

⌉
, we deduce

P [α(G) ≥ X ] ≤
(

n

X

)
(1−p)(X

2) < (
ne−p(X−1)/2)X = o(1),

recalling
(n

X

)≤ nX
X ! , (1−p) < e−p ,and theunionbound. Takingn sufficiently large such

that P
[

X ≥ n
2

]
, P [α(G) ≥ X ] < 1

2 ensures the existence of some graph G with fewer
than n

2 cycles of size at most ℓ and α(G) < 2n1−θ ln(n). What remains is to take this
object which we know exists andmodify it as needed to obtain the desired object.

To this end,webreak each cycle of size atmost ℓby removing a vertex fromeach.
Call this new graph G∗. Automatically, girth(G∗) > ℓ. Also, |V (G∗)| ≥ n

2 , and α(G∗) ≤
α(G). Hence,

χ(G∗) ≥ |G∗|
α(G∗)

≥ n

2
· 1

3n1−θ ln(n)
= nθ

6ln(n)
→∞

as n →∞. This completes the proof.

Question 4.0.3. What do these constructed graphG∗ actually look like?
Since 1959, many explicit constructions have been discovered. We include the

following example for a bit of culture and concreteness.
Example 4.0.4. (The Mycielskian) Consider ℓ= k = 3. We can construct an explicit
graph satisfying the conclusion of Theorem 4.0.2 by forming the Mycielskian of C5

as see in Figure 2.
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C5

Figure 2: TheMycielskian graph associated toC5. Its girth and chromatic number exceed ℓ= k = 3.

5 Probabilistic Bounds
We briefly review a bit of classical probability theory.

Definition 5.0.1. A random variable, traditionally denoted X , is a variable whose
(numerical) value depends on a random experiment.

Random variables come in two flavors: discrete and continuous.

Example 5.0.2. (Binomial Random Variable) The binomial random variable, de-
noted Bi(n, p) counts the number of successes of an experiment (whose probability
of success is p and whose probability of failure is 1−p) performed n times.

Example 5.0.3. (Bernoulli Random Variable) The Bernoulli random variable, de-
noted Be(p) = Bi(1, p) is a special case of the binomial random variable, namely
when only a single trial occurs.

Definition 5.0.4. For E some event, the indicator function of E (also known as a

zero-one event) is given by 1[E ] =
{

1 if E occurs
0 otherwise.

As usual, we denote E[X ] the expected value and var[X ] the variance of a random
variable X . We proceed to a few fundemental bounds in probability theory.

Theorem 5.0.5. (Chebyshev’s Inequality, 1867) If var(X ) exists, then

P [|X −E[X ]| ≥ t ] ≤ var(X )

t 2

where t > 0.

Chebyshev’s inequality effectively bounds the concentratedness of a random
variable around its mean from below.
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Theorem 5.0.6. (Markov’s Inequality, 1935) If X ≥ 0 almost surely, then

P[X ≥ t ] ≤ E[X ]

t

where t > 0.

Markov’s inequality similarly bounds a non-negative randomvariable’s positive
deviation from its mean from above.

Definition 5.0.7. The conditional expectation of a random variable X given some
even E is the value denoted E[X |E ].

Definition 5.0.8. The conditional expectation of a random variable X given some
random variables Y1, . . . ,Yk is a function denoted E[X |Y1, . . . ,Yk ].

Crucially,whileE[X |E ] is a revisedvalue in lightof theoccurrenceofE ,E[X |Y1, . . . ,Yk ]
is a revised function in light of information accessible in Y1, . . . ,Yk .

Often, we cannot compute expected values directly. What we can do, in the set-
ting of a discrete probability space, is partition the space into distinct events–the
probabilities of which are known–to elucidate an expected value.

Definition 5.0.9. For a probability spaceΩ= E1∪E2∪. . . , the law of total probability
yields the following decomposition of E[X ] :

E[X ] =∑
i
E[X |Ei ] ·P[Ei ].

In the special case X = 1[E ], we have E[X ] =P[E ] =∑
i P[E |Ei ] ·P[Ei ].

Question 5.0.10. When is a randomvariable X close to itsmean E[X ]? Formally, for
all t ≥ 0, how do we bound P [X ≥ E[X ]+ t ]?

ByMarkov’s inequality 5.0.6, we deduce for all u ≥ 0,

P [X ≥ E[X ]+ t ] =P[
euX ≥ eu(E[X ]+t )]≤ e−u(E[X ]+t ) ·E[uX ].

When X = ∑n
i=1 Xi for {Xi }1≤i≤n a collection of independent random variables, we

further obtain

P[X ≥ E[X ]+ t ] ≤ e−u(E[X ]+t ) ·
n∏

i=1
E
[
euXi

]
.

Supposing X =Bi(n, p), we deduce for λ= np = E[X ],

P[X ≥λ+ t ] ≤ e−u(λ+t ) · (1−p +peu)n , (1)
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where one can check by expanding that 1−p +peu = E[euBer(p)]. How canwe under-
stand the right-hand side of 1? Is it “large”? How does it grow in t?

Fixing t < n −λ (which is a sensible restriction, since X ≤ n, i.e. X ≤ E[X ]− (n −
λ)), wemight wonder where theminimum is achieved with respect to eu .We could
check via differentiation:

d

deu

(1−p +peu)n

eu(λ+t )
= 0 =⇒ eu = (λ+ t )(1−p)

p(n −λ− t )
is critical,

hence aminima as can be checked. It follows that, for 0 ≤ t ≤ n −λ,

P[X ≥λ+ t ] ≤
(

pn−λ−t

(λ+ t )(1−p)

)λ+t

·
(

n(1−p)

n −λ− t

)n

=
(

1−p

n −λ− t

)n−λ−t

·
(

λ

λ+ t

)λ+t

·nn−λ−t

=
(

n −λ
n −λ− t

)n−λ−t

·
(

λ

λ+ t

)λ+t

To recap, we obtain

P[X ≥λ+ t ] ≤
(

n −λ
n −λ− t

)n−λ−t

·
(

λ

λ+ t

)λ+t

. (2)

This is what is called aChernoff bound, andwas established in 1952. A Chernoff
bound is an exponentially decaying upper bound on the tail of a random variable.
It is sharper thanMarkov andChebyshev, which aremere power lawbounds onde-
cay. The above formulation is not unique; Chernoff bounds come in different ver-
sions. Importantly, it furnishes a tight concentration bound of a binomial random
variable around its mean.

Inpractice, however, theboundgiven in2 isunwieldy; thebehaviorof thebound
is notmanifestly clear. We present the following cleaner formulation, whichmakes
exponential decay at t →∞manifest.

Theorem 5.0.11. For X =Bi(n, p), λ= np, and

ϕ(z) =
{

(1+ z) ln(1+ z)− z z ≥−1,

∞ z <−1
,

then

P [X ≥ E[X ]+ t ] ≤ e−λϕ(t/λ) ≤ e− t2

2(λ+t/3) t ≥ 0, (3)

P [X ≤ E[X ]− t ] ≤ e−λϕ(−t/λ) ≤ e− t2

2λ t ≥ 0. (4)
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Proof. We have, by 2 for 0 ≤ t ≤ n −λ,

P[X ≥λ+ t ] ≤
(

n −λ
n −λ− t

)n−λ−t

·
(

λ

λ+ t

)λ+t

= e
ln

((
n−λ

n−λ−t

)n−λ−t ·
(

λ
λ+t

)λ+t
)

= e
(λ+t ) ln

(
λ
λ+t

)
+(n−λ+t ) ln

(
n−λ

n−λ+t

)
= e−(λ+t ) ln

(
1+ t

λ

)+(n−λ+t ) ln
(
1− t

n−λ
)

= e−λϕ(t/λ)−(n−λ)ϕ
(− t

n−λ
)

≤ e−λϕ(t/λ) ≤ e− t2

2(λ+t/3) .

One can similarly derive Equation 4.

Corollary 5.0.12. P[X ≥ E[X ]+ t ] ≤ e− t2

2λ+ t3

6λ2 .

The following corollary is a multiplicative version of a Chernoff bound, as it
bounds relative error rather than absolute error, and is oftenmore practical.

Corollary 5.0.13. For X =Bi(n, p), ϵ> 0,

P[|X −E[X ]| ≥ ϵE[X ]] ≤ 2eϕ(ϵ)E[X ], (5)
where again ϕ(ϵ) = (1+ϵ) ln(1+ϵ)−ϵ, and

P[|X −E[X ]| ≥ ϵE[X ]] ≤ 2e2 ϵ
2

3 E[X ] when ϵ≤ 3

2
. (6)

One natural question arises:

Question 5.0.14. Which bounds are best?

The answer to this question of course depends upon the given parameters. At
least when p < 1

2 , the bounds in 3 and 4 are best.
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